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Energy spectra of steady two-dimensional turbulent flows

Norbert Schorghofer
Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong

~Received 8 October 1999!

The power spectrum is measured in direct numerical simulations of the two-dimensional Navier-Stokes
equation and other two-dimensional flows with white-in-time forcing at large scales. For the Navier-Stokes
equation the energy spectrum in the inertial range approachesk23 with increasing Reynolds number, with
possible logarithmic corrections. A family of two-dimensional flows, including the surface quasigeostrophic
equation, allows us to vary the locality of the ‘‘enstrophy’’ transfer, where enstrophy is the mean square of the
convected quantity. Dimensional analysis based on the enstrophy dissipation correctly predicts the energy
spectrum, whenever the enstrophy transfer can be assumed to be spectrally local. Otherwise, the enstrophy
spectrum is steeper than would be expected on the basis of local transfer. In this case the data suggest ak21

passive scalar spectrum.

PACS number~s!: 47.27.Gs, 47.27.Ak, 92.90.1x
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I. INTRODUCTION

More than 30 years ago the energy spectrum of tw
dimensional turbulence was theoretically predicted. Yet
evidence for this spectrum has remained weak in some ca
Classical theory@1–3# predicts the energy spectrum based
a ‘‘cascade’’ of either energy or enstrophy. Once the relev
physical quantities have been identified, simple dimensio
analysis leads to the power spectrum as a function of w
numberk. However, the spectra measured in many numer
simulations decay substantially faster withk than predicted
@4#.

The range of wave numbers larger than the inverse sys
size and up to the dissipative damping is called ‘‘inert
range.’’ In this paper we assume power laws for the iner
range as a ‘‘working hypothesis,’’ since possible deviatio
from a power behavior cannot be determined from numer
data with confidence.

A general review of two-dimensional turbulence and t
slope of the energy spectrum can be found in Refs.@5,6#.
Following, we summarize recent results on the inertial-ran
spectrum.

For decayingtwo-dimensional turbulence a spectrum pr
portional tok23 has by now been clearly observed for t
late stage of the evolution, see, e.g., Refs.@7,8#. With forcing
at small scales evidence for the predictedk25/3 is less clear.
In a detailed analysis, Borue@9# found k23 resulting from
strong vortices and ak25/3 background field. Least reporte
is two-dimensional turbulence forced atlarge scales. High-
resolution simulations by Gotohet al. @10–12# have demon-
strated relatively flat spectra, which become less and
steep as the Reynolds number increases, and indeed a
to approachk23. Similar observations have been made
Borue @13#. Experimentally, two-dimensional Navier-Stoke
turbulence is difficult to realize, although there has be
much progress recently~see Ref.@14#!.

The k23 law follows from dimensional analysis@2,3#.
Closure theory gives a logarithmic correctio
k23log(k/kI)

21/3. Dimensional analysis requires us to choo
the relevant physical quantities and predicts different ex
nents depending on this choice. Saffman proposed a s
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trum of k24 based on vorticity discontinuities@15#: an oth-
erwise smooth function punctured by jump discontinuit
has Fourier coefficients;k21, which corresponds to ak24

energy spectrum. An idea@16,17# to bridge the discrepancy
betweenk23 andk24 was to consider accumulations of di
continuities through spiral vortices, and suggestsk211/3 ~over
a fixed range ofk only!. Others@18,19# proposed that spectr
steeper thank23 arise from strong vortices that are distrib
uted over different length-scales according to a power la
Which is the correct theory?

In Sec. II we study the inertial range energy spectrum
the two-dimensional Navier-Stokes equation. In Sec. III
turn to a more general family of flows, which allows us
test the applicability of the various theories. Conclusions
found in the last section.

II. NAVIER-STOKES FORCED AT LARGE SCALES

The two-dimensional Navier-Stokes equation takes
form of an advection-diffusion equation for the vorticityv
5¹W 3vW ,

]v

]t
1vW •¹W v5D¹2v1 f . ~1!

In two dimensions, vorticity is a scalar quantity. The forcin
f supplies the energy dissipated via a dissipation constanD.
Half of the square of the vorticity is called ‘‘enstrophy.’’

A. Design of simulations

The flow is simulated in a doubly periodic box of siz
2p32p. Forcing acts on large scales 4<uku,6, with con-
stant amplitude but random phases renewed at each
step. The Fourier method is used for spatial derivatives
fourth-order Runge-Kutta is employed for time integratio
The constant time stepDt'0.5Dx/max(uvxu1uvyu). This for-
mula is appropriate from linear stability analysis of the a
vection equation and the coefficient in front is empirica
determined.

In two-dimensional flows, vortices merge and grow ev
larger. These vortices must be destroyed in order to rea
6572 ©2000 The American Physical Society
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stationary state. This is done by adding a dissipation te
2gv, with g'0.01, to the right-hand side of Eq.~1!, re-
stricted to large scales 0,uku<3. The number of involved
modes allows rather isotropic large-scale dissipation
forcing.

A mild spectral filter has been used, without comple
dealiasing. Dealiasing conserves energy and enstro
@20,8#, but not other inviscid constants of motion. Hence
could artificially favor a power-law behavior based on the
quantities@21#.

The use of normal viscosity requires more computatio
resources than hyperviscosity. The real Navier-Stokes e
tion has normal viscosity, and hyperviscosity is known
affect some of the statistical properties. To avoid this deg
of uncertainty normal viscosity is used in the simulatio
here.

The slope of the energy spectrum equilibrates quickly a
fluctuates little with time. Long runs showed no drift in th
energy spectrum. Table I lists the runs together with sev
of their parameters. The first column defines the type of fl
by a parametera introduced later in the text. The Navie
Stokes equation corresponds toa52.

B. Inertial range spectrum

The enstrophy spectrumH(k)5* ukW u5kuv̂u2dkW , is shown in
Fig. 1 for various Reynolds numbers. The slope in the in
tial range becomes flatter as the Reynolds number increa

The spectra are averaged over several instants of t
While the spectra hardly change with time, averaging o
several snapshots smooths the wiggled spectra and aid
this way the determination of slopes. Local slopes can
extracted using one of the usual methods of numerical
ferentiation. Rather similar slopes are obtained from fittin
straight line to the spectrum on a log-log plot~points with
error bars in Fig. 2!. The error bars result from fitting differ
ent ranges and also comparing with local slopes.

TABLE I. List of runs and their parameters.N5number of grid
points on each side. The total timeT over which measurements ar
taken starts after a prior period of relaxation to equilibrium. Av
ageŝ & are over all space and a number of instances of time.
enstrophy dissipation«5D^(¹u)2&.

a N T D ^vW 2& ^u2& «

1 256 67 131023 0.38 0.38 5.331023

1 512 134 531024 0.48 0.48 5.031023

1 1024 59 231024 0.61 0.61 4.931023

1 2048 3 931025 0.63 0.63 4.131023

2 256 4021 531024 0.044 0.46 5.631023

2 512 247 231024 0.056 0.58 5.631023

2 1024 300 631025 0.073 0.91 5.231023

2 2048 8 231025 0.085 1.2 5.331023

3 256 167 231024 5.431023 0.84 5.631023

3 512 804 631025 7.831023 1.2 5.631023

3 1024 335 231025 7.131023 1.4 5.331023

4 256 419 831025 1.131023 2.1 7.931023

4 512 457 1.531025 1.031023 3.0 5.631023

4 1024 335 431026 9.231024 3.8 5.531023
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A logarithmically corrected power law is also fitted to th
inertial rangeCk21(k/kd)s11log(k/kI)

2(31s)/(71s). This par-
ticular form follows Ref. @10# and reduces to the closur
prediction for s521. The wave numberkI is the forcing
scale,kI'5, kd the dissipation scale, andC is a constant.
The fitteds is insensitive to the choice ofkd . For the purpose
of comparison, the Reynolds numberRL used in Fig. 2 is
defined in the same way as in Ref.@10#

RL5
UL

D
, U5A^v2&, L5

1

2

U

^D~¹v!2&1/3
. ~2!

U and L are a velocity and length scale respectively. T
parameters is shown in Fig. 2 as diamonds. The measu
ments agree within errors with simulations by Gotoh@10# at
resolutions ranging up to 409634096. They are shown in
Fig. 2 as discs, to be compared with the diamond symbo

-
e

FIG. 1. Enstrophy spectra for the Navier-Stokes equation
different Reynolds numbers. Forcing acts on large scales. The
ted line has slope21. There is a visible change of the inertial rang
slope with Reynolds number.

FIG. 2. Slope of the enstrophy spectrum of the two-dimensio
Navier-Stokes equation versus Reynolds numberRL . The different
types of points correspond to a simple power lawks ~error bars!, a
logarithmically corrected power law of the form
k21(k/kd)s11log(k/kI)

2(31s)/(71s) (L), the same from simulations
by Gotoh ((), and the slope of the background field (3). The
slope of the energy spectrum is the slope of the enstrophy spec
minus 2.
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6574 PRE 61NORBERT SCHORGHOFER
Whatever the assumed functional form and the proced
to determine the slopes, a clear flattening with Reyno
number is evident. The energy spectrum is simply relate
the enstrophy spectrum byE(k)5H(k)/k2. From Fig. 2 one
can rule outE(k);k24, but notk211/3. It is most plausible
thatk23 ~with perhaps logarithmic corrections! is asymptoti-
cally reached.

The steeper slope measured in many earlier simulat
might simply be explained by the low resolution~and there-
fore low Reynolds number!. There are several venues of e
planation. Flow at low Reynolds number could really hav
steeper spectrum. Coherent structures and intermittency
fects have been proposed to this end. Another possible
planation is that ‘‘local’’ interactions among wave vecto
are still spread over a substantial range of wave numb
comparable to the size of the inertial range in numeri
simulations. Or the higher slopes might have been due
numerical artifacts, e.g., an insufficient number of rep
sented modes or insufficient integration time.

C. Decomposition into strong vortices and background field

A few, large coherent structures can dominate the ene
spectrum over a substantial range of wave numbers. If
vortices are distributed by themselves with ever and e
smaller length scale, they can also determine the form of
spectrum over the entire inertial range. Decomposition i
coherent structures and background flow has been applie
decaying turbulence@18,19# and to turbulence forced a
small scales@9#. Here we shall apply the same decompo
tion to turbulence with forcing at large scales.

The procedure@18,19,9# decomposes the domain into
small region of high enstrophy and a large remaining reg
of background flow. The cutoff level is chosen at 2v rms. The
slopes depend on the cutoff level forv, but only weakly at
this value for the cutoff. The background flow covers 9
97 % of the domain, in agreement with an approximat
Gaussian distribution forv @12,22#. Applying this procedure,
the slopes of the background flow are shown in Fig. 2
crosses. The background field has systematically a fla
slope, but with the same asymptotic behavior as the comp
flow.

The foreground field~the strong vortices! has a cleark22

spectrum, as shown in Fig. 3~solid line!. This behavior is
independent of the Reynolds number.

FIG. 3. Spectra of enstrophy concentrations (uuu.2u rms) in the
large-scale and inertial range.
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III. a TURBULENCE

A. Introduction

In this section we investigate other two-dimension
flows. A particular family of flows, collectively called ‘‘a
turbulence,’’ has recently attracted attention as model eq
tions for the study of turbulence and singularities~see, e.g.,
Refs.@23–26,22#!.

The flows are described by advection-diffusion equatio

]u

]t
1vW •¹W u5D¹W 2u1 f . ~3a!

The scalar quantity advected isu(rW,t). The velocityvW (rW,t) is
a function ofu, best written in Fourier space,

vŴ ~kW ,t !5 i
kW'

ka
û~kW ,t !. ~3b!

We write k for ukW u. The symbolkW' indicates a vector of
length ukW u and direction perpendicular tokW . It follows that
¹•vW 50. The forcing is again white-in-time.

Different values ofa correspond to different flows@25#.
The two-dimensional Navier-Stokes equation~1! is recov-
ered fora52 andu corresponds tov. The surface quasi-
geostrophic equation,a51, is a special case of quasige
strophic flow, as relevant for planetary atmospheres
oceans@23#. In this case,u is physically interpreted as tem
perature, which determines the velocity field through
buoyancy effect. A third equation considered isa53 which
arises in geophysical context as a shallow flow on a rota
sphere with uniform internal heating@27#.

One can study Eq.~3! also for values ofa not physically
realized. It can be considered as a model system par
etrized bya, which, in view of Eq.~3b!, controls the depen-
dence ofv on u. Only the nonlinear termvW •¹u in Eq. ~3a!
couples different modes and generates small-scale turbul
from the large-scale forcing. In Fourier space Eq.~3! trans-
lates into

~] t1Dk2!û~kW ,t !5E dkW8
ikW•kW8'

kW8a
û* ~kW8!û~kW2kW8!1 f̂ ~kW ,t !.

Here, the influence ofa on the coupling between modes
seen explicitly.

Borrowing terminology from the Navier-Stokes equatio
the conserved quantity12 u2 shall be called ‘‘enstrophy.’’ As
a consequence of Eq.~3a! enstrophy moves from the forcin
to the dissipation scale. The left hand side of Eq.~3a! con-
serves^un& for all a and positive integersn. Another con-
served quadratic quantity iscu, which however does no
need to be positive and it is not local. Here the stream fu
tion c is given by ĉ(kW ,t)5 û(kW ,t)/ka. The kinetic energy
1
2 ^vW 2& is only conserved for certain values ofa, when it
coincides with either̂u2& or ^cu&.

Equation~3! is invariant underrW→rWl, t→tl2. This in-
variance naturally defines a Reynolds number for flow of a

a as Re5UL/D. We chooseU5A^vW 2& and L51 for a
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large-scale Reynolds number Re. With this definition
Reynolds number Re takes on only slightly different valu
from RL used before~2!.

B. Results

The flows for differenta are simulated and analyzed
the same way as described in Sec. II for the Navier-Sto
equation. The scalaru takes on the role ofv. The slopes for
a simple power law are shown in Fig. 4. Since, from E
~3b!, uvŴ (kW )u25uû(kW )u2/k2(a21), the slopes of the energy an
enstrophy spectrum differ precisely by 2(a21). In each part
of Fig. 4 a clear dependence on Reynolds number is s
The background flow shows a systematically flatter slope

Previous studies of the energy spectrum for flows w
aÞ2 and aÞ1 are due to Pierrehumbertet al. They use
hyperviscosity to extend the inertial range and hence obs
flatter slopes, even at lower resolution.

Figure 5 provides an overview of slopes as a function
a. Shown are the slopes for the complete flow fields~tri-
angles!, the background fields~crosses!, and data by Pierre
humbertet al. ~circles! @24#. The slopes displayed are for th
highest Reynolds number measured and are hence ste
than for asymptotically high Reynolds number. Finite-tim
singularities fora,1 pose questions on the validity of th
numerical scheme.

Values ofa51 and 2 are both special, since they co
serve kinetic energy. A run fora51.5 at a resolution of

FIG. 4. Slope of the enstrophy spectrum for flows witha
51,3,4 as a function of Reynolds number Re. Points with error b
correspond to the complete flow; crosses to the background fl
Solid and dashed lines are theoretical values for asymptotic
large Reynolds number.
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5123512 produced intermediate values betweena51 and 2
at the same resolution, so that there is no discernible qu
tative difference.

Also the decomposition into background and foregrou
field is carried out as before. Figure 3 shows the enstro
spectra of the foreground at a resolution of 102431024, i.e.,
comparable Reynolds number. A different behavior is se
for a<2 anda.2. In the first case, regions of large enstr
phy are roundish~elliptical!, while in the later they form
filaments~Fig. 6!. As discussed below, this conforms wit
the idea that the small scales are dominated by large-s
shear only fora.2.

C. Comparison with theory

Pierrehumbertet al. @24# suggested the spectra ofa tur-
bulence could be explained by a local enstrophy cascad
one region ofa and a Batchelor-type passive scalar behav
in another. Indeed this finds strong support from the data

Classical dimensional analysis states that onlyk and the
enstrophy dissipation are physically important. From the
mension of velocity@v#5L/T, the dimension of the scala
@u#5L22a/T follows using Eq.~3b!. One arrives at the pre
diction of an ‘‘enstrophy cascade’’@24#

H~k!;~d^u2&/dt!2/3k27/31(2/3)a. ~4!

These predictions are drawn as solid lines in Figs. 2, 4,
5. They agree with the data fora<2. Fora.2 the slopes do
not seem to approach the enstrophy prediction and ne
become flatter than21.

The cascade argument requires a sufficiently local ens
phy transfer@2#. The criterion is the mean-square she
which behaves as*k2E(k)dk @2#. The spectrumE(k) is
based on the velocity,E(k)5* ukW u5kuvŴ u2dkW . This limits the

rs
w.
ly

FIG. 5. Slopes of the enstrophy spectrum versusa ~ignoring
possible modifications to a pure power law!. Shown are the slopes
at the highest Reynolds number (n), the slopes of their backgroun
field (3), and data by Pierrehumbertet al. (() who used hyper-
viscosity. At higher Reynolds numbers the spectra become fla
The solid, dashed, and dash-dotted line are theories for asymp
cally large Reynolds number. The dotted line roughly separa
local and nonlocal enstrophy transfer, based on a dimensional
mate.
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6576 PRE 61NORBERT SCHORGHOFER
validity of Eq. ~4! to a,2. For a.2 the transfer is not
expected to be spectrally local. Figure 5 shows the separa
of local and nonlocal transfer based on above integral e
mate~leading tos52a25) as a dotted line.

Another important transition takes place also ata52.
The typical time scale of motion as a function of wave nu
ber changes. Based on either Eq.~4! or ~5!, the fast motion
shifts from small scales to large scales. Fora.2 the small
scales do not have enough time to equilibrate, before they
moved around by the large scale motion over substan
distances. There is no time to reach ‘‘Kolmogorov equil
rium.’’

This leads to the idea that a passive scalar spectrum m
be applicable. The classical theory of the passive scalar s
trum in two-dimensional turbulence@28# leads indeed to a
k21 spectrum and has also been suggested as an altern
explanation of the Navier-Stokes enstrophy spectrum@5#.
Batchelor’s@28# derivation does not make use of the fun
tional dependence of the velocity, since it is for a pass
scalar. Hence thek21 form generalizes to anya, and can be
justified for a>2 because of the aforementioned nature
time scales. To reproduce this spectrum by dimensio
analysis one assumesk and the absolute size of the enstrop
^u2& are physically important. One obtains

H~k!;^u2&k21 ~5!

independent ofa. The dashed lines in Figs. 4 and 5 a
drawn at an exponent of21. Apparently no enstrophy spec
trum for oura-turbulence is flatter thank21.

FIG. 6. Contour plot of the scalaru in regions of large enstro
phy u2.4^u2& for ~a! a51, ~b! a52, ~c! a53, and~d! a54. In
~a! and ~b! elliptic structures predominate, while~c! and ~d! show
many thin filaments. Contour lines are drawn at62u rms, 63u rms,
64u rms, and so on.
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The data agree with Eq.~4! for a,2 and Eq.~5! for a
.2. The validity of either approach is theoretically partic
larly questionable fora52, yet both coincide and appear t
be correct~besides logarithmic corrections!. Exactly at this
crossover lies the Navier-Stokes equation. Here both Eqs~4!
and ~5! are dimensionally correct, becauseu contains only
units of time. Only here coincides the theory of enstrop
cascades with passive advection of small scales.

The idea that~well-separated! step discontinuities in the
enstrophy distribution determine the spectrum@15# leads to
H(k);k22 for all a and is ruled out by the data~see dash-
dotted line in Fig. 5!. Incidentally, the strong enstrophy con
centrations considered in isolation form precisely ak22

spectrum fora51 anda52, as seen in Fig. 3. The qualita
tive difference in the foreground field fora<2 anda.2 is
also clearly seen in Fig. 6. By definition, the foreground flo
field is set to zero whereuuu,2u rms. Saffman’s argument
explains thek22 behavior in this case: as a consequence
the decomposition procedure, a one-dimensional cut thro
the field shows~well-separated! step discontinuities. Why
the foreground spectrum fora52 is more similar to that of
a51 than toa53 is unclear.

For the background field we note from Figs. 2 and 4 th
the difference in slope between the complete field and
background field is reduced with increased Reynolds nu
ber. The last data point fora51 appears as exception. I
total, there is no evidence for any discrepancy in the t
slopes for asymptotically high Reynolds number.

IV. GENERAL THEORY

The conclusions are drawn and discussed in the con
with various other results~e.g., Refs.@28,2,13,9,24,29,10#!
on two-dimensional turbulence.

Steepening by large structures.Concentrations of large
enstrophy~‘‘strong vortices’’! lead to a steepening of th
spectrum for any kind ofa turbulence. However, they hav
less influence on the spectrum at higher Reynolds num
For the two-dimensional Navier-Stokes equation this was
ready suggested by earlier observations@13#. Asymptotically
the flow field appears to approach the same inertial ra
spectrum with or without its large vortices taken into a
count. For the Navier-Stokes equation without forcing
with small-scale forcing, coherent vortex structures have a
been observed to steepen the spectrum, may it be ov
limited range of wave numbers or for the entire inert
range. For large-scale white-in-time forcing anasymptotic
steepening isnot supported by the data.

Enstrophy dissipation based scaling.For the Navier-
Stokes equation the enstrophy dissipation based scaling
is in good agreement with numerical simulations, even wh
normal~genuine! viscosity is used. The energy spectrum fla
tens with Reynolds number and appears to appro
k23 (k21 for the enstrophy!, with logarithmic corrections to
this power law certainly possible@10,13#. The same theory as
for the Navier-Stokes equation applies to other flows as lo
as the enstrophy transfer may be assumed to be domin
by local strain ~‘‘local enstrophy cascade’’!. In this case,
dimensional analysis based on enstrophy dissipation
rectly describes the inertial range energy spectrum withi
power law approximation.
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Passive scalar based scaling.The cascade argument los
its self-consistency for the two-dimensional Navier-Stok
equation, since it predicts in this case a marginally nonlo
transfer. For nonlocal enstrophy transfer one expects pas
advection of the scalar by strain fields varying slowly
space. The enstrophy spectrum is steeper than would be
pected on the basis of local transfer. In this sense one can
that nonlocality steepens the spectrum. The data suppo
asymptotick21 form in agreement with passive scalar b
havior.
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